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This investigation combines two questions for expected utility theory: 
1. When do the shared preferences among expected utility maximizers conform to the dictates 

of expected utility? 
2. What is the impact on expected utility theory of allowing preferences for prizes to be state- 

dependent? 
Our principal conclusion (Theorem 4 )  establishes very restrictive necessaq and sufficient con- 

ditions for the existence of a Pareto, Bayesian compromise of preferences between two Bayesian 
agents. even when utilities are permitted to be state-dependent and identifiable. This finding 
extends our earlier result (Theorem 2. 1989a) which applies provided that all utilities are state- 
independent. .A subsidiary theme is a decision theoretic analysis of common rules for "pooling" 
expert probabilities. 

Against the backdrop of "horse lottery" theoq (Anscornbe and Aumann 1963) and subject to 
a weak Pareto rule, we show, generally. that there is no Bayesian compromise between two Bayesian 
agents even when state-dependent utilities are entertained in an iileizrifii~l~leway. The word "iden- 
tifiable" is important because, if state-dependence is permitted merely by dropping the Anscombe- 
Aumann axiom (Axiom 4 here) for "state-independence," though a conti~luum of possible Bayesian 
compromises emerges. also it leads to an extreme underdetermination of an agent's personal 
probability and utility given the agent's preferences. Instead, when state-dependence is monitored 
through (our version of) the approach of Karni, Schmeidler. and Vind (1983). the general im- 
possibility of a Bayesian. Pareto compromise in preferences reappears. 
(CONSENSUS: HORSE LOTTERIES: PRIZE-STATE LOTTERIES; SUBJECTIVE EXPECTED 
UTILITY) 

1. Introduction 

This paper combines two questions for expected utility theory: 
1. When do the shared preferences among expected utility maximizers conform to 

the dictates of expected utility? 
2. What is the impact on expected utility theory of allowing preferences for prizes to 

be state-dependent? 
Against the backdrop of the "horse lottery" theory of Anscombe and Aumann ( 1963) 

and subject to a weak Pareto rule, we show that, in general, there is no Bayesian com- 
promise between two Bayesian agents even when state-dependent utilities are entertained 
in an iden t~ableway. In order to see the relevance in pairing these two issues, first 
consider the importance of each question alone. 

Regarding shared preferences, it is natural to inquire whether justifications of expected 
utility theory can be extended from a single agent to a cooperative group in such a way 
as to preserve those preferences common to them all. For an illustration, consider two 
coherent decision makers, call them Dick and Jane, who wish to act in unison-with 
binding agreements possible-in a fashion that their collective choices conform to axi- 
omatic canons of expected utility theory. This is, suppose 

( i )  whenever both Dick and Jane (separately) think that option A2 is strictly better 

* Accepted by Irving H. LaValle: received April 2. 1990. This paper has been with the authors 2 months for 
2 revisions. 
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than option A l ,  then Al cannot be their cooperative choice if A2 is available-a (weak) 
Pareto condition on cooperative, group preference; and suppose 

(ii)  their collective choices are coherent. 
Then the first question amounts to asking when there is a Pareto compromise of individual 
preferences that satisfies the axiomatic constraints which constitute "coherence." 

Seidenfeld, Kadane, and Schervish ( 1989a) examines this question for the Horse Lottery 
theory of rationality proposed by Anscombe and Aumann ( 1963). Their theory, like 
many others (such as Savage 1954), axiomatizes rational preferences for acts defined as 
functions from states to outcomes. Anscombe and Aumann's theory is distinguished by 
its use of simple von Neumann-Morgenstern lotteries for outcomes. (A von ,Ireiu?zann- 
Morgenstern lottery, denoted by L ,  is a probability distribution over a set 9 ofprizes. A 
lottery is sirnple if its distribution has finite support. All lotteries discussed in this article 
are simple.) Anscombe-Aumann acts, called horse lotteries (denoted by H), are functions 
from states to von Neumann-Morgenstern lotteries. That is, let the set of states be X ,  a 
finite set. For each x E X and each horse lottery H ,  H ( x )  is the von Neumann-Mor- 
genstern lottery which H provides when state x occurs. Thus, in contrast with Savage's 
theory, Horse Lottery theory relies on an extraneous account of probability for defining 
outcomes (and applies just for simple acts: acts which assume only finitely many lottery 
outcomes). 

The use of extraneous probability affords an elegant axiomatization of rational pref- 
erence for horse lotteries. Let .< ( 5) denote, respectively, strict (weak) preference between 
acts. For 0 r cu I 1, denote by cuHl + (1  - a ) H 2 ,  defined (as in the theory of von 
Neumann and Morgenstern 1947) as the state-by-state convex combination of their 
corresponding lottery outcomes. Last, let HL,denote the "constant" horse lottery that 
awards the lottery L, in every state. Four axioms summarize Anscombe-Aumann theory 
for nontrivial preferences. (Note that the first three axioms comprise the von Neumann- 
Morgenstern Utility theory.) 

AXIOM 1. Preference is a weak order. That is, 5 is reflexive and transitive, with every 
pair of acts compared. 

AXIOM2. Independence. For every HI ,H2,H3,and every 0 < a I 1, 

HI5 H2 if and only if aHl + ( 1 - a )H35 aH2+ ( 1 - a )  H3.  

AXIOM 3. Archimedes. If HI .< H2< H3, there exist 0 < a ,  P < 1, such that 

aHl + ( 1  - a)H3 + H2+ PHI + ( I  - P ) H 3 .  

The next axiom refers to nonnzlll states. 
DEFINITION1. A state x*  is null for an agent if he/she is indifferent between each 

pair of acts that have the same outcomes (state-by-state) on the remaining states x # x*. 
That is, if x*  is null, it does not matter to the agent's assessment of acts what outcome 
results when x*  occurs. A state is nonnull if it is not null. 

AXIOM 4. State-independent preference for lotteries. Given two von hTeumann-Mor- 
genstern lotteries L l  and L2,  let HIand H2be two horse lotteries which dzffer only in that, 
for sorne nonnull statex*, H l ( x * )  = L1 and H2(x*) = L2 ( H l ( x )  = H2(x )  for x # x*) .  
( That is, the t,i1o acts, HIand H2are (state by state) identical except for state x*.) Then 

HLl5 HL2 Ifand only if HI5 H2.  

In words, Axiom 4 requires that the agent's preference for outcomes (where outcomes 
can be thought of also as constant acts) replicate under each state for acts that are "called 
off," except in that state. Throughout this paper, we will assume that preferences are not 
trivial. That is, each agent holds some strict preferences. This corresponds to Savage's 
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postulate P5. The four Horse lottery axioms have natural counterparts within Savage's 
theory for simple acts, PI-P6: Axioms 1 and 2 correspond, respectively, to Savage's 
postulates PI and P2. The Archimedean Axiom 3 is contained within Savage's technical 
P6. Last, Savage's P3 (and part of P4) serve the same purposes as Axiom 4. 

The next theorem introduces a utility function to be thought of as a function U from 
the set of prizes 9 to the real numbers. If L is a von Neumann-Morgenstern lottery 
corresponding to the simple probability distribution Q over 9,  then we write U(L) to 
stand for C g  U(g)Q(g) .  

THEOREM 1 (Anscombe and Aumann 1963). Axioms 1-4 are satisjied zfand only 
ifthere exist a (state-independent) utility U (ziniqile up to positive afine transformation) 
over prizes and a unique personal probability P over states (with P ( s )  > 0 ifand only if 
s is nonnzlll), satisfying, for every HIand Hz, 

HI 5 HZ if and only if Z P(xJ) U(LIJ) IZ P(xJ) U(L2,). 
J J 

That is, rational preference according to Anscombe-Aumann theory is equivalent to 
expected utility theory with a personal probability P over states and a utility U over 
prizes. 

The central result of Seidenfeld, Kadane, and Schervish ( 1989a) about shared pref- 
erences for two agents, Dick and Jane, whose preferences satisfy these four axioms, is as 
follows. Let sD( s J )  be, respectively, Dick's (Jane's) preference. By the previous theorem, 
each preference order is summarized by the probability /utility pair (PD,UD) or (Pj,  C:). 
Suppose these two decision makers have different personal degrees of belief, PD# PJ, 
and different utility functions for prizes, UD # UJ. And suppose there are two prizes 
which they rank order the same. (See footnote 11 in Seidenfeld, Kadane, and Schervish 
1989a for a discussion of the significance of this assumption.) Let < be the strict partial 
order created with the (weak) Pareto condition, discussed above. That is, define HI< HZ 
if and only if, both HI < D  H2and HI .<, Hz,  i.e., if and only if Dick and Jane each 
prefers HZover H I .  

THEOREM2 (Seidenfeld, Kadane, and Schervish 1989a). The partial order < agrees 
with no coherent preference 5 except for the two agents' preferences. That is, except for 
5 and 5J ,  no preferences satish the Anscombe-Aumann theory while preserving the 
strict preferences captured by < . 

In other words, there is no coherent (Pareto) compromise of preferences available to 
Dick and Jane. See Seidenfeld, Kadane, and Schervish ( 1989a) for discussions of the 
relation between Theorem 2 and the celebrated Possibility Theorem of Arrow ( 195 1 ), 
and for the relation to important papers by Hylland and Zeckhauser ( 1979) and Ham- 
mond ( 1981). The negative conclusion of Theorem 2 is reminiscent, also, of recent 
syndicate-theoretic work by Pratt and Zeckhauser ( 1989). That theory puts very restrictive 
conditions on the extent to which agents in a coherent syndicate may hold different 
beliefs or utilities. The principal contrast with Theorem 2, however, is that the syndicate 
is formulated with individual veto rights. Each member of the syndicate may exercise a 
veto whenever an option is judged by that agent to be inferior to the "status quo." 
Theorem 2 operates under the weak Pareto rule, without an additional veto authority 
for individuals. 

The import of the negative result in Theorem 2 depends, of course, upon the adequacy 
of Horse Lottery theory as an account of expected utility theory. For instance, it is easy 
to show (see footnote 12 of Seidenfeld, Kadane, and Schervish 1989a) that if Axiom 4 
is dropped, there are a continuum of Pareto compromises satisfying the first three Horse 
Lottery axioms. Thus, we arrive at the second of the two questions posed in the opening 
paragraph: What is the significance of Axiom 4 for expected utility theory? 
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We begin our answer by reviewing a formally trivial point. Let the preference order 
5 be represented by expected utility, using a (possibly) state-dependent utility. That is, 
suppose 

HI5 H2 if and only if C P(x,) CJ( Hl (x j ) )  r 2 P(xj)OJ(H2(xJ)), 
J J 

where it may be that, e.g., CJ2(g) # C3(g)  for some prizes g .  It may be, contrary to Axiom 
4, that the agent's valuation for a particular prize depends upon the state in which it 
occurs. 

Next, let P*  be a probability which is mutually absolutely continuous with P ,  i.e., P 
and P*  agree on the "null" states of 0 probability. Define the state-dependent utility 
C,*, by 

o;* (g)  = u,(g)P(x,)lP*(x,). ( 1 )  

It follows immediately that 

HI 5Hz if and only if 2 P*(x,) O;* (HI(x,)) 5 C P*(x,) U; (HZ(X~) ) .  
J j 

Thus, using state-dependent utilities, personal probability is wholly zlndejned (up  to null 
states) when probability and utility are reduced to a preference 5 over acts. Given only 
the preference structure 5 , its expected utility representation by a probability / utility pair 
is maximally underdetermined. (See Schervish, Seidenfeld, and Kadane 1990 for a dis- 
cussion of state-dependence as it applies to the theories of Anscombe and Aumann 1963 
and Savage 1954.) 

What is called for, then, is an expected utility theory that does not require Axiom 4 
but instead introduces state-dependence in an identifiable way. To duplicate the intent 
of Theorem 1, we need extra "data" about preferences in order to cany out the mea- 
surement of probability and utility, where the latter may be state-dependent. Both of 
these goals are met in proposals by Karni, Schmeidler, and Vind ( 1983), elaborated by 
Karni ( 1985) . In 57 of Schervish, Seidenfeld, and Kadane ( 1990), we simplify their 
construction. 

The underlying theme is straightforward. The extra data on preferences, needed for 
investigating state-dependent utilities, involve a comparison of outcomes across states. 
One way to obtain these data (as suggested by Karni, Schmeidler, and Vind 1983) calls 
for a von Neumann-Morgenstern construction over prize-state outcomes. That is, the 
agent is asked to rank order (new kinds of hypothetical) lotteries over outcomes s ,  but 
where the state (x,) is a component of that outcome. A prize-state lottery is just a stipulated 
probability distribution over the set of prize-state pairs (just as von Neumann-Morgenstern 
lotteries are stipulated probability distributions over the set of prizes). We will denote 
prize-state lotteries i where i ( g ,  x) is the stipulated probability of prize-state pair 
( g ,x ) .  

The upshot of this approach is that the agent provides two preference orders: 5 over 
the original horse lottery acts and C over prize-state lotteries. That is, unfortunately, the 
lotteries used to indicate state-dependent preferences are not merged with the horse lot- 
teries. They are not part of a single preference order. The second order (C)  reveals the 
agent's utility U for outcomes, which may be state-dependent. That utility is then used 
to restrict the potential expected-utility representations for the first order ( 5). The analysis 
is facilitated by a requirement that, for each nonnull state x ,  the agent's preferences for 
prize-state lotteries involving only state x must agree with his/her "called-off" preferences 
for horse lotteries that agree on all but state x .  This "consistency" condition between 
the two preference schemes, 5 and C, is captured in Axiom 5, from Schervish, Seidenfeld, 
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and Kadane (1990). The version stated here allows for situations with arbitrarily many 
states. 

AXIOM5. Consistency. Suppose thefollowing conditions hold: 
x* is a nonnull state. 
For each pair iland i2of prize-state lotteries whose probabilzty distributzons QI 

and Q2 assign probability 1 to the set ofpairs 9 X {x*) = { (g ,x* )  : g E 9 )  (that is ,  
with x* jixed). 

L,  and L2 are the von Neumann-Morgenstern lotteries whose simple probability 
distributions over 9 respectively agree with Ql and Q2 when 9 is thought of as equivalent 
to 9 X { x * ) .  

HI and H2are horse lotteries which satish HI(x*) = L1 ,H2(x*) = L2 and HI( y )  
= H2(y)for all states y f x*. 

Then ilC i2i fand only ifHl 5 H2.  

The question we answer in 52 is this: When state-dependent preferences are entertained 
(as we argue they ought to be), under what conditions will there be an expected-utility 
model for the shared preferences of two agents? That is, when can two agents acting 
cooperatively find a coherent, Pareto compromise of their two preference schemes, 5 ,  

and C, , i = 1, 2? We show that the "impossibility" reported in Theorem 2 obtains (with 
some minor qualifications). 

We note, in passing, that our proof of Theorem 2 (from Seidenfeld, Kadane, and 
Schervish 1989a) does not facilitate a reduction of the state-dependent case to the state-
independent case. We see the idea for the reduction prompted by Theorem 13.2, p. 177 
of Fishburn (1970). Provided that there are (at least) two constant acts (of unequal 
value and with state-independent values) to serve as the 0 and 1utility benchmarks across 
states, Fishburn's result shows that the conclusion of Theorem 1 may be obtained even 
when other prizes are available only in designated states. Then, except for the two constant 
acts ( 0  and 1), we may as well say that each state has its own set of prizes, disjoint from 
every other state. The upshot is a version of Theorem 1 in which (except for the two 
constant acts) utility is vacuously state-independent. The reduction from state-dependence 
to state-independence occurs by declaring that (apart from 0 and 1) outcomes do not 
reappear in different states. However, we cannot apply the proof of Theorem 2 under 
this modification of Theorem 1 because the proof of Theorem 2 uses the structural 
assumption that each prize is available in each state. (This assumption is also found in 
the theory of Savage 1954.) 

Example 3, discussed in $3, addresses problems of "pooling" opinions. There are well-
studied proposals for combining the probabilities taken from several "experts" to form 
a single distribution that stands for the collective whole. (See Genest and Zidek 1986 for 
an excellent review.) However, the issue of pooling is a special case of the decision theoretic 
problem (discussed above), since conditional probability is a special case of state-depen-
dent utility. That is, for a restricted set of acts, e.g., for called-off bets, the agent's utility 
U, (given state x,) is his/her conditional probability given x,. Thus, we investigate the 
adequacy of pooling rules from the standpoint of the decisions they induce. Specifically, 
which pooling rules satisfy the Pareto condition? 

2. Existence of Compromises 

Let the set of possible states of nature be X,a finite set, and let the set of possible 
prizes be 9. We will not assume that the same prizes are necessarily available in every 
state. Hence, for each state x E X,we let 9, be the set of prizes that are available in state 
x .  We will let X stand for the random (unknown) state which eventually occurs. Let S 
stand for the set of prize-state pairs s = ( g ,x ) .  Consider two Bayesian agents. Let agent 
i (for i = 1, 2 )  have subjective probability Pi (with expectations denoted E,) and 
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state-dependent utility U, , where U, (g, x )  denotes the utility to agent 1 of reward g if 
state x occurs. We will denote by H a general act such that for each x E X,H ( x )  is a 
simple von Neumann-Morgenstern lottery over 8,.We suppose that agent i ranks each 
act H according to the value of I?, [ U, ( H ( X ) ,  X ) ] .  We will also suppose that agent i has 
ranked all prize-state lotteries using U, . That is, if Q is a stipulated probability over the 
set S which specifies prize-state lottery i ,  agent i ranks i according to the value of 
U, ( L )  = Cs U, ( s )  Q(s ) .  Of course, we assume that the rankings of each agent satisfy 
Axiom 5. All probabilities in this paper are countably additive. The proofs of the new 
results given in this section appear in an appendix. 

We now ask what are the possible representations for a Bayesian compromise between 
two such agents if we require that the compromise satisfy a weak Pareto condition both 
for acts and for prize-state lotteries. 

DEFINITION2. By a ranking of acts, we mean a preference relation which satisfies 
Axiom 1 (weak order). If I is a function from acts to real numbers, we will say that I 
ranks acts as follows: 1 ranks act T as weakly (strictly) preferred to act V if and only if 
l ( T )  2 (> ) l (V) .  We say that a ranking of acts satisfies the weak Pareto condition with 
respect to two agents if, whenever E , [U, (G(X) ,  X ) ]  < E,[U, (R(X) ,  X ) ]  for two acts 
G and R and for both i = 1 and i = 2, R ranks higher than G. Similarly, a ranking of 
prize-state lotteries satisfies the weak Pareto condition with respect to two agents if, when- 
ever U, ( i l  ) < U, (L2)  for two prize-state lotteries iland i2and for both i = 1 and i 
= 2, iZranks higher than i I .  We say that a ranking of acts and a ranking of prize-state 
lotteries are Bayesian if they each satisfy Axioms 1-3 and together they satisfy Axiom 5. 

It is clear that every probability/utility pair ( P ,  U) provides a ranking of acts by 
expected utility as follows. Let E mean expectation. Then set 1 (T)  = E ( U ( T ( X ) ,  X ) ) .  
This leads to the following definition. 

DEFINITION Let P' and P" be probabilities with corresponding expectations denoted 3. 
E' and EM. Let U' and U" be utilities. We say that E'U' ranks all acts the same as EMU" 
if, for every pair of acts T and V, E r [U ' (T (X) ,  X ) ]  I E1[U' (V(X) ,  X ) ]  if and only if 
EV[U"(T(X),  XI IEV[U"(V(X) ,  X ) ] .  

Similarly, every utility U provides a ranking of prize-state lotteries by the values 
of ~ ( i ) .  

Our results will concern two Bayesian agents who rank acts according to expected 
utility and rank prize-state lotteries by utility. That is, we assume that two agents have 
probabilities PI and P2,respectively, and utilities UI and U2, respectively. We will let 
expectations be denoted El and E2,respectively. First, we recall a result of Harsanyi 
( 1955) (see also Fishburn 1984), which says that a ranking of acts satisfies the weak 
Pareto condition with respect to two agents if and only if it ranks all acts the same as a 
convex combination of the two expected utilities of the agents. 

THEOREM3 (Harsanyi 1955). A ranking of acts satisfies the weak Pareto condition 
with respect to our two agents ifand only if it ranks acts the same way as 

A corollary to this theorem contains an important ingredient of our results. 

COROLLARY For i = 1 ,2  and each x E X ,  letf; ( x )  = Pi ( X  = x ) .  Let the probability 1. 
P (with corresponding expectation E )  be defined by P = 0.5(PI + P2) .  Then f ( x )  
= P ( X  = x )  = 0.5[fi( x )  + f2(x)].  For each a, the utility 

U,( g ,  x )  = a -u I ( g , x )+ (1  - a ) -  h(x)  U2(g, x ) .  
f (  x )  f ( x )  

has the property that EU, ranks all acts the same as  does I, from (2) .  
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In words, a ranking of acts satisfies the weak Pareto condition with respect to our two 
agents if and only if it ranks all acts the same as EU, for some a .  

Next, we derive a similar result for prize-state lotteries. The following lemma is essen-
tially the same as Theorem 3, except that it refers to prize-state lotteries. (Its proof will 
not be given because it is identical to that of Theorem 3.) 

LEMMA1. A utility U ranks prize-state lotteries in such a way that it satisfies the 
weak Pareto condition with respect to our two agents ifand only ifthere exist a > 0, b ,  
andO1/31 1 such tha t aU+  b =  PU1 i ( 1  - P ) U 2 .  

We will refer to the convex combination /3UI + ( 1 - P) U2 as U( ' )  Theorem 2 of 
Schervish, Seidenfeld, and Kadane ( 1990) says that, in order for the ranking of prize-
state lotteries given by U(fi)to be consistent (Axiom 5 ) with a ranking of acts by expected 
utility, there must exist a probability P, (with expectation E,) such that the ranking of 
acts is given by E,u("). 

We are now prepared to put these results together. The question of what nonautocratic 
Bayesian Pareto compromises exist for both acts and prize-state lotteries becomes the 
question of what probabilities P, (with expectation E,) and which /3 and a exist such 
that E,U(" ranks acts the same as EU,. We propose to answer this question by fixing 0 
< /3 < 1 and determining under what conditions there exist a and P, such that E,U(O) 
ranks acts the same as EU,. 

The next theorem contains the answer to our main question. We first offer some 
intuition as to the meaning of the conditions of the theorem. (The notation in this 
discussion includes notation introduced in the theorem.) The set B1 can be thought of 
as the set of states such that the conditional probabilities given B1 are equal. That is, 
PI(A / B, ) = P2(A / B1) . We know when two agents agree on the probabilities of events, 
there are nonautocratic Pareto compromises available. The set B2 is the set of states x 
such that the two utility functions U1( .,x )  and U2( ,x )  are essentially the same (when 
c(x)  and d (x )  have the same sign). We know that when agents agree on the utilities of 
all lotteries, nonautocratic Pareto compromises are available. By assuming that P(B,  
U B2)= I, we assume that almost surely one of the two cases just described occurs (i.e., 
for each state, the agents either agree on the probabilities or they agree on the utilities). 
When c(x) and d(x)  have opposite signs, then the two utilities are in complete opposition. 
It is known that nonautocratic Pareto compromises exist in this case also. (See footnote 
11 in Seidenfeld, Kadane, and Schervish 1989a). Note that the function r in Theorem 
4 is defined in terms of the functions c and d, which may not be unique. For example, 
if there exists a set of x values in B2 such that both U, (g, x) and U2(g,x )  are constant 
in g then both c (x)  and d ( x )  are arbitrary for such x values. This means that there might 
be many functions r of the form specified. Each such function will be called a version of 
r .  The reader should also note that, if x EBI nB2,then both forms of r ( x )  in Theorem 
4 are the same. 

THEOREM4. Let 0 < P < 1. Define 

B, = { x : a (  1 - P)f i (x)  = P( 1 - a)"h(x)),  

B2 = { x : 3b(x), c(x) ,  d (x )  such that 

d ( x )U2(g,x )  = c(x)Ul(g,  x )  + b(x)  Vg E 8,,with not both c (x)  = 0 

undd(x)  = 01,  
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Then E,u(" ranks all acts the same as EU, ifand only i f the following conditions hold: 
1. P ( B I U B2) = 1. 
2. There exists a version of r such that P ( { x  : r ( x )2 0 ) ) = 1 ,  and f , ( x )  = r ( x ) / a  

is the ~nassjilnction of P,, where a = C l , E X  r( y ) .  

Speaking very loosely, Theorem 4 says that there exists a Bayesian Pareto compromise 
between two agents which applies to both acts and prize-state lotteries if and only if, for 
each state, either the agents agree on the probability of the state or they agree on the 
utility in that state. The proof of this theorem appears in the appendix. We illustrate the 
theorem with several examples in $3. 

3. Examples 

Example 1 is the special case handled by Seidenfeld, Kadane, and Schervish ( 1989a). 
EXAMPLEI .  Suppose that X = { 0 ,  1 ) and 9 ,  = { 0 ,  r ,  1) for all x .  Suppose that for 

each i ,  P, ( 0 )  = p, ,  U, ( 0 ,  x) = 0 for all x ,  and U, ( 1 ,  x )  = 1 for all x .  Let U l ( r ,  x )  = r, 
and U2(r ,  x )  = r2.In this way, utilities are state-independent. Suppose that p, # p2 and 
rl f r2. The set B2 is clearly empty. The set B1 can contain at most one of the two x 
values, and then only for exceptional values of a and /3. The result is that P ( B I  U B 2 )  
< 1. We already know that only autocratic Pareto compromises are available in this case, 
and Theorem 4 confirms this. 

Example 2 shows how all of the conditions of Theorem 4 can be met with both B1 
and B2 nonempty. 

EXAMPLE2. Let X = ( 1 ,  2, 3,  4,  5 )  and 9 ,  = {go ,  g , ,  g 2 )  for all x .  Let the state- 
dependent utilities be 

The two probabilities are P 2 ( x )= 0.2 for all x and PI ( x )  = 0.3 1 for x E { 1, 2, 3 ) ,PI ( 4 )  
= 0.02, P 1 ( 5 )  = 0.05. With a = 3 and /3 = f , we see that B,  = ( 5 )  and B2 = ( 1 ,  2, 3,  
4 ) . The values of c ( x )and d ( x )are 

c ( x )= I 
2 if x = l ,  


1 if x = 2, 


arbitrary if x = 3, 


( l i f  x - 1 ,  
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We calculate r( x )  as 

The sum of these values is a = 0.924. It follows that the mass function of P, is 

To verify that everything worked out, we tabulate both ~ ( " ( g ,x )  and U,(g, x )  in the 
fm-nat ( U ( g , ,  x ) ,  U(g2, x ) ,  U(g3, x ) ) :  

We see that the difference between a f , ( x )  U'O1(g, x )  and U,(g, x )  is constant in g 
(although not constant in x ) . Hence, E, u("ranks all acts the same as EU, . 

Example 3 shows how the results of this paper are relevant to considerations of "ex- 
ternally Bayesian" pooling operators. 

EXAMPLE3. Suppose that interest lies in the joint distribution of two random quantities 
( X ,  G )  lying in a finite space X X 9 as well as in the conditional distribution of G given 
X .  Suppose we have two probability functions P1 and P2 over X X 9.  For each 0 I/3 
I1 ,  let Po = /3Pl + ( 1  - /3)P2,which is called the linear opinlon pool. Let P F X  denote 
the conditional mass function of G given X derived from P, ,  and let P: denote the 
marginal mass function of X .  Similarly, let p f X  and P; denote the conditional and 
marginal mass functions derived from PR.The linear opinion pool is externally Bayeslun 
if 

That is to say, if we pool the joint distributions and then condition on X ,  we get the 
same result as if we condition each distribution on X and then pool. 

An interesting question arises as to whether a linear opinion pool can be externally 
Bayesian. 'Theorem 4 provides an answer. Let the set of prizes be 9 and let the set of 
states be X. Define U, ( g ,  x )  = p f I X ( g l  x ) ,  that is, let the conditional mass function of 
G given X = x play the role of the state-dependent utility function. Also, let the marginal 
distribution of X play the role of the probability. The right-hand side of ( 4 )is just U'". 
The left-hand side of ( 4 )can be written as 
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-- Ua 
- where 
P* 

It follows that ( 4 )  holds if and only if C; = P,U'"'. Using this correspondence, an act 
H would correspond to a stipulated probability distribution over 9 for each x E X,say 
pH(.  1 x ) .  Then 

and, if we let E, be the expectation corresponding to P,, 

It follows that ( 4 )  holds if and only if E,U'@)ranks all acts the same as PE,U1 + ( 1 
- P)E2U2.This, in turn, holds if and only if the conditions of Theorem 4 hold. Condition 
1 says that both P? and P; must assign probability 1 to the union of the two sets Bl  
and B2.Since a = p in this case, we can write 

B, = { x :  P ~ ( x )= ~ ; ( x ) } .  

Condition 2 says that P, must equal P f l a  on B, . But ( 5 )  implies that a = 1. On B2\B1,  
P,(x) must be a convex combination of P?(X) and P$'(x), but it will be a different 
convex combination than ( 5 )  unless b (x)  = 0 and c (x )  = d ( x )  = 1. It also follows that 

B2 = {X: ~ Y ~ ( g l x )= P f x ( g l  x ) ,  for all g }  

In summary, ( 4 )  holds if and only if, for almost all x ,  either P f ( x )  = ~ f ( x )or 
py X( / x )  = P y x (  1 x ) .  

4. Conclusion 

Theorem 4 shows that, for two Bayesian agents, nonautocratic (weak) Pareto com-
promises exist only under very restrictive conditions. This result extends Theorem 2 by 
allowing for state-dependent utilities. Our results suggest that, even with state-dependent 
utilities, there is little hope that two Bayesians can amve at a Bayesian compromise which 
satisfies the (weak) Pareto rule. 

We see three ways for avoiding the unpleasant conclusion that Bayesians cannot find 
cooperative Bayesian compromises: 

1. Savage ( 1954, 5 13.5), in his discussion of the group minimax-regret rule, concludes 
that the standards of rational group behavior need not be the same as the standards of 
his theory of rational individual behavior. Specifically,he offers that the rational individual, 
but not the group, ought to be committed to the principle that preference is a weak-order 
(his postulate P 1) . 

2. Levi ( 1982) argues for a unified account of individual and (cooperative) group 
decision making-without the assumption that preference induces a weak-order. But, in 
rebuttal to our Theorem 2, he finds that the (weak) Pareto condition is unwarranted (see 
Levi 1990). Roughly put, he defends a logically weaker rule, which he calls "Robust 
Pareto," wherein the (weak) Pareto condition applies only when, e.g., each agent's pref-
erence, for, say H2over H I ,  is invariant over an interchange of their probabilities (for 
states), or is invariant over an interchange of their utilities (for outcomes). His position 
is that the preference relation, as captured by expected utility inequalities, is a derivative 
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notion to be supported by reasons, expressed in terms of probabilities and utilities. Unless 
the agents can find common reasons for their common preferences, such preferences are 
not to count in a Pareto compromise. The Robust Pareto rule is intended to capture just 
those cases where common preferences are supported by some common reasons. Under 
this modification of Pareto, using Levi's Robust Pareto rule, there exists a convex family 
of Bayesian compromises for each pair of Bayesian agents. Hence, in Levi's theory, there 
is no result analogous to our Theorems 2 and 4. 

3. In Seidenfeld, Kadane, and Schervish ( 1989b) and Seidenfeld, Schervish, and Ka-
dane ( 1990), we explore representations for a theory of preference, where preference is 
a strict partial order, using sets of probability /utility pairs. This provides a unified standard 
of rational behavior across individuals and cooperative groups, and yet maintains the 
(weak) Pareto principle. We hope that approach will afford a viable solution to the 
challenge of rational group behavior.' 

' This research was supported by National Science Foundation grants DMS-87 1770. DMS-8705646. DMS-
8805676, SES-8900025,and DMS-9005858, Office of Naval Research contracts NOOO14-88-K-0013and NOOO14-
89-5-1851. and the Buhl Foundation. The authors wish to thank the Departmental Editor and referees for 
helpful suggestions. They would also like to thank Giovanni Parmigiani for helpful comments on an earlier 
draft. 

Appendix. Proof of Theorem 4 

The proof of Theorem 4 will proceed through several lemmas. We will use the following notation throughout 
this appendix. Probabilities on X will be denoted by P with superscripts or subscripts and the corresponding 
mass functions and expectations will be denoted by the letters fand E ,  respectively, with the same superscripts 
or subscripts. For example.J J ' ( x )= P"(X = s)and E U ( A ( X ) )= C,,, h ( x )J"(x). 

LEMMA2. S ~ ~ p p o s eE ' L '  and E " L Urank all acts the sanle. Then there exist a > 0 and b ,  sitcli tliar, .for 
every act G ,  

E f [ a C ' ( G ( X ) ,X )  + b ]  = E U [ C u ( G ( X ) ,X ) ] .  (6)  

PROOF First, suppose that there exist two acts T and R such that E 1 [ C ' ( R ( X ) ,X ) ]  < E f [ C ' ( T ( X ) ,X ) ]  
and E f ' [ C " ( R ( X ) ,X ) ]  < E U [ C " ( T ( X ) ,X ) ] .Then set 

E u [ L " ( T ( X ) ,X ) ]  - E u [ L " ( R ( X ) .X ) ]  
a = 

E 1 [ V ( T ( X ) ,X ) ]  - E f [ C " ( R ( X ) ,X ) ]  
' 

b = E f ' [ U " ( R ( X ) .X ) ]  - a E f [ L ' ( R ( X ) .X ) ] .  

It follows that both of the next equations hold 

E ' [ a C 1 ( R ( X ) .X )  + b ]  = E f ' [ C ' " ( R ( X ) ,X ) ] ,  

E 1 [ a C ' ( T ( X ) ,X )  + b ]  = E " [ C U ( T ( X ) ,X ) ] .  

For each act G, there exists 0 5 n 5 1 such that one of the following is true: 

a T + ( l  n ) R  -- G ,  

where -- refers to the common preference ranking of E'L" and Ef'C'".In the first case. both 

E f [ L " ( G ( X ) ,X ) ]  = n E 1 [ C ' ( T ( X ) ,X ) ]  + (1 - n ) E 1 [ C ' ( R ( X ) ,X ) ] ,  

E U [ C " ( G ( X ) ,X ) ]  = n E f 1 [ C " ' ( T ( X ) .X ) ]  + (1 - o l ) E " [ C " ' ( R ( X ) ,X ) ] ,  

and we see that (6)  holds. The proof is similar in the other two cases. 
Finally, suppose that both E'L '  and EuL" rank all acts as equivalent. Then. for all acts G ,  E ' [  U 1 ( G ( X ) .X ) ]  

= c', say and E U [ C " ( G ( X ) ,X ) ]  = c", say. Let a = 1 and b = c" - c' to complete the proof. 
Under the conditions of Lemma 2, the following lemma allows us to replace the two different probabilities 

with a single probability. (The proof is trivial and not given.) 
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LEMMA3. Suppose that E ' [C 1 ( G ( X ) ,X ) ]  = E " [L " ' ( G ( X ) ,X ) ]  for every act G .  Let P be a probability 
(with rnassfilnction f )  such that f ( x )  = 0 implies f l ( x )  = 0 and f f 1 ( x )= 0. Then 

E[% C J ( G ( X ) .x ) ]= E[% L"'(G(x),  X ) ]  

for every act G .  

The following lemma says that, under the conditions of Lemmas 2 and 3, for each x ,  the two utilities C'and 
C"', as functions of g ,  must be related by an affine transformation. 

LEMMA4. I f E [ C ' ( G ( X ) ,X ) ]  = E [ C f ' ( G ( X ) ,X ) ]  for etlery act G .  then P { x  : C ' ( g .x) - C'"(g,x )  1s 
constant In g }  = 1 .  

PROOF. Let 

C+ = { x  : 3 g ( x ) ,l z ( x )E 9, such that C f ( g ( x ) ,x )  - C " ( g ( x ) ,x )  > C ' ( l ~ ( x ) ,x )  - L U ( h ( x ) ,x ) } ,  

C- = { x  : 3 g ( x ) ,h ( x )E 9 ,  such that C ' ( g ( x ) ,x )  - C f ' ( g ( x ) ,x )  < C ' ( / z ( x ) ,x )  - C J ' ( h ( x ) ,x )  } 

We need to prove that P(C+U C - )  = 0.  Define two acts 

g ( x )  if x E C+,  
G ( x )= 

arbitrary if x @ C+,  

F o r x E  C+,set 

r ( x )  = Li(g(,x) .,x) - Un(g( ,x ) ,x )  - U f ( h ( , x ) ,X )  + U U ( h ( x ) ,x ) ,  

which is strictly positive for all x E C+.Set r ( x )  = 0 for x @ C+.It is easy to see that 

0 = E I L 1 ( G ( X ) ,X ) ]  - E [ L U ( G ( X ) ,X ) ]  - E [ C ' ( H ( X ) ,X ) ]  + E [ U f ' ( H ( X ) ,X ) ]  = E [ r ( X ) ] ,  

which implies that P ( C + )= 0.  A similar proof shows P ( C - )  = 0. 
We are now in position to prove Corollary I .  

PROOFOF COROLLARY1. For every act G .  

In the remainder of the theorems. & will always mean ( 3 ) ,and P will mean 0.5(P1+ P 2 )  

LEMMA5. Suppose that E'C' ranks all acts tlze same as EC,.  Thefollowing are true: 
There exists P" such that E"U' ranks acts the same as E'U' and f ( x )  = 0 impliesf J ' ( x )= 0 
There exists a > 0 strch that 

U ' ( g ,x )  - C,(g, x )  is constarzt in g 

For each x ,  call the constant valzie s , (x )  

PROOF. If f ( x )  = 0 implies f l ( x )  = 0, we need only prove the second part of the lemma. Let A be the set 
of all s* such that f ( x * )  = 0 but f ' ( x * )  > 0. It must be that 

P ' ( x  EA : D"(g,x )  is constant in g )  = P f ( A ) ,  

or else E'U' would be able to distinguish acts that differed only on A ,  while ELT,would not. Suppose that c ( x )  
is the function such that P ' ( { x: U ( g ,x )  = c ( x )for all g } )  = P ' ( A ) .There are two cases to consider. 

1 .  First, if P 1 ( A )= 1 ,  then E'U' must rank all acts as equivalent because E'( U 1 ( G ( X ) ,X ) )  = E 1 ( c ( X ) )for 
every act G .  In this case, set P" = P. Then E"D" will also rank all acts as equivalent. 

2. Second, suppose 0 < P 1 ( A )< I .  For each event B define P " ( B )= P ' ( Bl A C ) .Now f ( x )  = 0 implies f " ( x )  
= 0 ,  and for each act G 

It is now clear that E"D" ranks all acts the same as E'U'.  
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For the second part of the lemma, use Lemma 2 to find a > 0 and b such that, for every act G ,  

E [ C b ( G ( X ) ,X ) ]  = E " [ a U 1 ( G ( X ) ,X )  + b ]  = E 

Next, use Lemma 4 to conclude that 

U ( g ,x )  + b - C,(g, x )  is constant in g 

In light of Lemma 5 ,  we will assume that each P, that we consider satisfies "f ( x )  = 0 implies f * ( x )  = 0." 

LEMMA6. E,U(O) ranks all acts the same as EC, ifand only ifthere esists a > 0 such that 

h,(g, x )  = [aPf,(x)  - af; (x) IU l ( g ,x )  + [a (1 - P ) f * ( x )- ( 1  - f f )SZ(x)lG ( g ,x )  ( 7 )  

is constant in g a.s .[P].Call this constant value h , (x) .  

PROOF. For the "if" part, we note that, for every act G ,  

a E , [ U ( " ( G ( X ) ,X ) ]  - E[CT , (G(X) ,X ) ]  = E -[>::'I. 
which is the same for all acts because we assume ( 7 ) .It follows that E,U(d' ranks acts the same as EL',. For 
the "only if" part, apply Lemma 5 .  

We are now in position to prove the "if" part of Theorem 4. 

PROOF(of the "if" part of Theorem 4 ) .  Assume that conditions I and 2 of Theorem 4 hold. For all x E B ,  

aPf,(x)  = aJ(,x) ,  

a( 1 - P ) f * ( x )= ( 1  - a ) h ( x ) .  

It follows that h,(g, x )  from ( 7 )equals 0 for all x E B I .For s E B2 and such that d ( x )i0, 

--- b ( x )[ ( I  - p ) r ( x )-
d ( x )  

which is constant in g .  Similarly, if c ( x )i0, 

which is the same as when d ( x )# 0. So, the conditions of Lemma 6 (the "if" part) are met and we conclude 
that E,U(d)ranks all acts the same as E L .  

LEMMA7.  Let B ,  and B2 be as in Theorem 4,  and suppose that P (B ,  U B2)= I. Sup~~osealso tirat there 
exist P, and cu such that E,C"Pj ranks all acts the same as EC',. Thenf ,  = dP,/dP n~lrsthave theform given 
in Tlzeorem 4, namely r ( x ) /a , f o rsome version of r. 

PROOF. First, we look at x E B2. Lemma 6 says that h,(g, x )  must be constant in g .  We deal with four 
cases here. 

Case ( i ) .  Both U , ( g ,x )  and CT2(g,x )  are constant in g. Then h,(g, x )  is constant in g,  and both c ( s )and 
d ( x )can be arbitrary (so long as both are not 0 ) .  This means that r ( x ) is arbitrary, and every f , ( x )  has the 
desired form. 
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Case (ii). CT,(g, x )  is constant in g ,  but & ( g ,  x )  is not. In this case d ( x )  = 0 is necessary, and r ( x )  
= ( 1  - a ) h ( x ) / ( l- 6 ) .  It is also true in this case that /l,(g, x )  equals a constant plus [ i i j ; ( x ) ( l  - 6 )  
- ( 1 - a ) h ( x ) ]C$(g,x ) .  For this to be constant, it is necessary thatJ ,(x)  = r(.x)/ci. 

Case (iii). CT2(g,x )  is constant in g ,  but U , ( g ,x )  is not. This is virtually the same as the previous case. 
Case (iv). Neither U 1 ( g ,x )  nor C;(g ,  x )  is constant in g. In this case, neither c ( x )  = 0 nor d ( s )  = 0 

is possible. It also follows that c ( x )and d ( x )are unique up to ~l~ultiplicationby nonzero constant (for each 
x ) .  To see this, suppose that for all g ,  c , ( s ) C , ( g ,  x )  + b , ( x )  = d , ( x ) 9 ( g ,  x )  for j = 1, 2. Set c * ( x )  
= c 2 ( x ) / c l ( x ) .Then 

It is clear that c * ( x ) d , ( x )= &(.x), and we have proven uniqueness. It follows that the form of r ( s )  is unique 
in this case. Now, write h,(g, x )  as 

This is constant in g if and only if f , ( x )  = r ( s ) / a .  
Next, look at s E B, \Bz. The only way for h,(g, x )  to be constant in g is for the coefficients of both b',(g, 

x- )  and &(g .  x )  to be zero. The reason is that, if not, x would be in B,. So, af*(x)P = aJ(.x) and we see that 
f * ( x )  = r ( x ) / a .  

LEMMA8. Let B ,  and B, be as in Tlleorem 4. Slrp[~osc.rllat P, and a exist slrch ihot E,P" 1.ail1sill1 acrs 
the same as El-,. Ther~P ( R ,  U B 2 )= 1.  

PROOF. Suppose that such a P, and a exist. Let a > 0 and b be as guaranteed by Lemma 2. Let B3 = ( R ,  
U B2)C.Then, for every x EB, and for every d ( x )and c ( s ) ,there exist g , ( s ) ,g*(,x)E 9* such that 

and a( 1 - @ ) J ( x )f P( 1 - a ) f i ( ~ ) .SO,for each x E B3. define 

Both c ( x )  = 0 and d ( x )  = 0 simultal~eouslyis not possible, since this would imply that x E B , .  For these 
choices of c ( x )and d ( x ) ,define g , ( x )and g , ( s )  to satisfy ( 8 ) .Now, define two acts 

g , ( x )  if x E B , ,  
GI( x )= 

arbitrary if s$ B,, 

We now have that 

0 = E,[aC"n(G,(X) ,  X ) ]  - EICT,(Gl(X).X ) ]  - {E,[aU("(Gz(X) .XI1 - E [ u , ( G z ( X ) ,X)11 

By ( 8 ) ,each term in this last sum is positive, hence B, must be empty. 
Finally, we are ready to prove the "only if" part of Theorem 4. 
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PROOF(of the "only if'' part of Theorem 4 ) .  Suppose that there exists a P, as in the statement of the 
theorem. We will now prove that conditions 1 and 2 hold. Lemma 8 says that if such a P, exists, then condition 
1 holds. Lemma 7 says that if such a P, exists, then condition 2 holds. 
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